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A Characterization of Independence in a Family..of

Distributions Exhibiting Certain Positive or Negative Dependence

by

Kumar Joag-Dev

Introduction. Among various notions of positive dependence, that of associa-

tion, introduced by Esary, Proschan and Walkup (1967), (written as EWP hence-

forth), has proved to be quite useful. To define this concept, let

= (Xl,...,Xk) be a vector of real random variables. The vector X

(equivalently, components Xi) is (are) sdid to be associated if for every

pair of functions f,g defined on Rn, R, both nondecreasing (nonincreasing)

(1) cov[f(x),g(x)] > 0,

or equivalently, if one is nondecreasing and the other nonincreasing, then

(U) cov[f(),gsX)) < 0.

Here a function is said to be nondecreasing (nonincreasing) if it

Is so in each argument separately.. In EWP it was shown that in particular,

if XI,...,X are independent random variables then they are associated.

Recently, Newman and Wright (1981) showed that if X is associated and

cov(XiXj) - 0, for every pair (ij) with i 0 J, then the X are

independent. Their approach was designed for obtaining certain bounds for

the difference between the characteristic function of X and the product

of characteristic functions of the X*, Hence, as a proof of the above

result. their approach is certainly not elementary. Newman and Wright (1981)

also mention a proof of Wells(1977) which seems to be even more complicated.

I -o . O ..• " . . . . .
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The purpose of this note is two-fold:

a) To widen the applicability of the characterization. Since

the condition of association is rather strong, it is desirable to look for

a weaker condition of positive dependence for which uncorrelatedness would

imply mutual independence. In fact we present an argument which shows that

the dependence condition considered here is minimal in some sense. Further

it provides a natural analog for negative dependence for which the same

characterization holds.

b) To obtain a direct and elementary proof of the above

characterization.

Regarding the negative dependence, a concept of negative association

is studied in [2]. The random vector X is said to be negatively associated

if the reverse inequality holds in (1) (or (IA)), where now f, g are defined

on disjoint subsets of X1,... Xk. Our results will imply that negatively

associated uncorrelated random variables are mutually independent.

The Result: Let X - l,...,Xk) be a vector of k real random variables.

Definition 1. The distribution of X (or X itself) is said to be strongly

positively orthant dependent (SPOD) if for an arbitrary subset A of the

index set {l,2,...,k) and a vector of constants c (cl,..,c k the

following conditions hold.

(2) P[Z P[Xi >ci, I e AJP(X cj, - i 1.

(3) IPJX 4. >1 IPXi I €i , I. r AIP[Xj r= j JE)

and

(4) , 1, E A; x . c j J

< Px> c i IF A)P[Xj , c, j 6 A],

Ft
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where A is the complement of A.

Remark 1. The dependence expressed by -SPOD is stronger than positive

upper orrhant dependence (PUOD) which'requires

k
(5) P[X > cl- -P[xi >_i el,

and positive lower orthant dependence (PLOD) requiring

(6) P[X < c) P [x1 I ci].

i-i

If (5) and (6) are both satisfied, the dependence is labeled as POD. For the

bivariate case however, all five conditions (2) - (6) are equivalent and the

dependence is called positive quadrant dependence (PQD), which was studied

in detail by Lehmann (1966). On the other hand, if X is associated then it

is SPOD. This is easily seen by choosing f and g as products of the

indicators of appropriate sets and applying either (1) or (A). It is well

known that even in the bivariate case, the association condition is strictly

stronger than PQD.

Theorem: If x is SPOD with uncorrelated components then the Xi are

mutually independent.

Prof: Let Yi - I[X ci], i w 1,...,k; where I is the indicator

function. Since c is arbitrary, it suffices to show that the Yt are

independent.

Now the Y are binary random variables and inherit SPOD from

. Further, SPOD of 4 implies that every pair XL, X is PQD. Lehmann

(1966) showed that PQD together with uncorrelatedness implies independence

of Xi, Xj and hence the Yi are pairwise independent.

. - *~ • . . • .
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To motivate our proof we will establish the result for k - 3.

The same technique together with induction yields the general result.

Let pi - P[Y1 - 1] and P[l,1,0] be the probability of

Y 1 = 1, Y2 - 1, Yj - 0 and so on.

From (4) and pairwise independence, it follows that

(7) P[,O,1] < pl(1 - p27P3.

In general, a similar inequality holds whenever a triplet contains both

0 and 1. For example,

(8) P[O,O,1J 1 (1 - pi)(1 - p2 )p 3.

However, these have to be equalities, because if not, they would

Imply (by adding)

l(9) PY 2  O, Y3 11 < - p2)p3,

violating the pairwise independence.

The only terms with possible reverse inequalities (apply (2)

and (3)) are

-(10) P[l,ll] 1 plp2p3

and

(11) P[O,0,O] > (1 - pl)(1 - p2 )(1 - p3 ).

But again these have to be equalities since the sum of the right

sides of other terms is 1 and cannot be exceeded by the sum of the left

sides.

For the induction step, one may assume that every subset of cardinal-

rnndom variables which are mutually independent. This will
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lead to inequalities similar to (7) or (8) for every k-tuple having both

a 0 and a 1. The rest of the argument is similar. //

• Let X be called strongly negatively orthant dependent (SNOD)

if the inequalities separating the left and right sides In (2), (3) and (4)

are reversed. Note that the negative association defined in the introduction

Implies SNOD.

Corollary: X is SNOD with uncorrelated components implies the Xi are

mutually independent.

Remark 2. For any notion of positive dependence which transmits those

conditions to the indicators Yi defined above, the characterization of

independence will have to hold for these binary variables. If the inequalities

such as (9) or (10) do not go in the same direction one could assign prob-

ability mass such that all others are equalities while the mutual independence

fails because of those terms. In this sense, the inequalities defining the

positive (negative) dependence seem to be necessary.

Finally, consider the classical Bernstein example where a tetra-

hedron has 3 sides with 3 distinct colors and the fourth has stripes

of all three. If X denotes the indicator of the presence of the ith

color at the bottom of the tetrahedron (after a tos) then it is -ell known

that the X i's are pairwise independent but not mutually independent. It

is interesting tr note that the X i's are (strictly) PUOD as well as NLOD.

This illustrates that weak positive and negative dependence may hold at the

* same time, and in spite of pairwise independence, the mutual independence

might fail.
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